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A solution is presented for the flow field in and around a single spherical droplet 
or bubble moving axially at an arbitrary radial location, within a long circular 
tube. In  the tube there is viscous fluid flowing with a constant Poiseuillian 
velocity distribution far from the droplet. 

The settling velocity of the droplet or bubble is 

This is a general equation and it contains as special cases the familiar solutions 
of Stokes, Hadamard-Rybczynski, Brenner & Happel, Greenstein & Happel 
and Haberman & Sayre. 

The function describing the deviation of the interface from sphericity is solved 
and an iterative procedure is suggested for obtaining higher order solutions. 

1. Introduction and existing solutions 
1.1. Introduction 

A considerable volume of literature has developed in the field of the dynamics of 
multiphase flow, including the specific problem of viscous flow around a solid 
particle or droplet. 

In  the present work, some of the difficulties involved are discussed and a 
solution presented for the flow field in and around a single spherical droplet or 
bubble moving in a pipe where fluid flows with constant Poiseuillian velocity. 

Previous theoretical studies have been based upon either the macroscopic or 
homogeneous approach or upon the microscopic approach. The former is based 
on a phenomenological description of a homogeneous fluid, whose physical 
properties are determined by the properties of its components. The macro- 
scopic approach yields relatively easy solutions, which may differ from the 
single-phase solution only by the difference in physical properties. It is, however, 
difficult to ascertain whether these properties have been correctly detined and 
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whether the solution is physically meaningful. Furthermore, the flow field is not 
completely solved, since the boundary conditions can be defined only on the walls 
of the conduit and donot:include the boundaries of the discontinuous phase. Due to 
these limitations, solutions based on the homogeneous model may be of practical 
use, but do not provide an insight into the underlying physical phenomena. 

In  contrast, the microscopio analysis solves the actual flow field by considering 
the full set of boundary conditions. A complete mathematical description of 
multiphase systems is not yet available, mainly because of the interaction be- 
tween such factors as particle and residence time distributions, turbulent intensi- 
ties, presence of surface active impurities and other phenomena. As a consequence 
it is usual to deal with a single particle or to employ the free-surface cell model. 

The free-surface cell model describes a representative particle enclosed in an 
imaginary cell, on which some boundary conditions are defined. It is further 
assumed a priori that the particles are arranged in a certain fixed array in the 
flow field. The main difficulties with this model are to choose correctly the 
geometry of the cell and to define appropriate boundary conditions on its surface. 

The theories dealing with a single particle suspended in a flow field do not 
consider the interaction between particles. However, these theories may yield 
the minimum distance between particles which is necessary for ignoring the 
interaction between them. If the distance between particles is larger than this 
minimum, one can assume that the interaction between them is negligible and 
the solution of the flow field for a single particle is applicable to the whole flow 
field. 

1.2. Existing solutions 

The existing solutions for a single particle or droplet suspended in a creeping 
flow field will only be highlighted here. Most solutions are well summarized by 
Happel & Brenner (1965). 

For all existing solutions the following are assumed: the fluids are homogeneous 
isothermal, Newtonian and of constant density; the flow is laminar and in steady 
state; the flow around the droplet or particle is creeping, i.e. Re< 1 such that 
the inertia terms in the equations may be neglected. The observer is assumed to 
be in an inertial co-ordinate system. Surface active agents are assumed to be 
absent in most solutions. 

With these suppositions the equations of motion reduce to the Stokes equations 
for creeping motion. 

The boundary conditions are usually defined as follows: 
(i) no-slip on any solid surface, 
(ii) matching velocities and stresses across any two-phase interface, 
(iii) a prescribed velocity far from the bubble or particle. 
A tacit assumption is frequently made that the droplet is spherical. This 

assumption may lead to difficulties and is further discussed in 5 2.2. 
The Stokes equations, subject to these boundary conditions, have been solved 

for various cases, Stokes solved the settling velocity of a solid particle moving 
in an unbound viscous fluid. Hadamard and Rybczynski independently solved 
the velocity fields inside and outside of a droplet moving in an unbound viscous 
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fluid. Levich (1962) extended their solution for the case when surface-active 
agents are present. Brenner & Happel (1958) solved the approximate flow field 
around a solid particle moving at an arbitrary location in Poiseuillian flow in 
a tube, using the method of 'reflexion'. 

Haberman & Sayre (1958) solved the equations, in a precise manner, for a solid 
particle moving along the centreline of a tube. They also solved approximately 
the flow field around a droplet, under similar conditions. Goldsmith & Mason 
(1962) discussed the lateral migration, perpendicular to the streamlines of the 
Poiseuille flow, of solid particles. They reported that liquid drops migrated 
towards the tube axis, at  very low Reynolds numbers, and investigated this 
phenomenon in terms of the deformation of the drop and the non-uniformity 
of the velocity gradient. Chaffey, Brenner & Mason (1965) presented a first-order 
theory for the migrat'ion of a neutrally buoyant drop suspended in a Couette 
flow. Recently, Greenstein & Happel (1968) evaluated the wall effects on the 
motion of a particle suspended in Poiseuillian flow in a tube. 

2. Statement of the problem and boundary conditions 
2.1. Statement of the problem 

The problem considered herein is that of a single droplet or bubble moving in 
the z direction with constant velocity U parallel to the longitudinal axis of an 
infinitely long circular cylinder. In the cylinder there is a viscous fluid flowing 
in the x direction, with constant Poiseuillian velocity distribution and with a 
maximum velocity U,. The centre of the droplet is situated at  a distance b from 
the cylinder axis. 

The co-ordinate systems employed here are cylindrical (R, a, 2) and spherical 
( r ,  8, $J). The origin of the spherical co-ordinate system coincides with the centre 
of the droplet. The co-ordinate systems are depicted in figure 1. 

The fluid around the droplet flows in creeping motion, i.e. with small Reynolds 
number (where Re = 2alU,(1 -b2/Ri )  - Ul/v ,  v is the kinematic viscosity). The 
inertial terms in the equations of motion may therefore be neglected. Thus, the 
equations of motion to be satisfied are 

and 

v2v = - 1 VP,, 

Pe 

1 

Pi 
v2u = -vpi, 

where v is the velocity vector of the continuous medium and u is the velocity 
vector inside the droplet, in terms of a co-ordinate system which moves with the 
droplet. The pressure p includes the potential gravity field. The subscripts ' e ' and 
'i 'refer to the properties exterior to the droplet and interior to it, respectively. 

The equations of continuity are 

v . v  = 0, (3) 

and v.u = 0. (4) 
44-2 
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2.2. The boundary conditions 

The boundary conditions to be employed (neglecting surface-active agents) are 
as follows: far from the droplet the flow field is Poiseuillian. In  terms of the 
Go-ordinate system which moves with the droplet, this becomes, 

where k is the unit vector in the z direction. 
at z = k 00, v = v, = (U,[l - (R/Ro)2] - q k ,  (5a) 

-bi i 

FIGURE 1. The gcometry and co-ordinatc systems used in the analysis. 

In  the spherical co-ordinate system this velocity is expressed as 

The usual condition of non-slip at  the wall of the cylinder in terms of the same 

At the interface of the droplet and the continuous medium the following is 

(i) continuity of the tangential velocity vectors, i.e. 

(6) co-ordinate system is, at R = R,, = - Uk. 

assumed : 

"(t) = %), (7)  
where v(t) and qt) are two-dimensional vectors; 
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(ii) vanishing of the normal component of the velocity vector, i.e. 

vn = un = 0; (8) 
(iii) continuity of the tangential components of the normal stress 

where T ( ~ ) ( ~ )  is the tangential component of the normal stress vector y3 inside 
the droplet; 

(iv) the relation between the outside and inside values of the normal com- 
ponents of the normal stress vectors is 

where r~ is the surface tension and Rl(O, 4) and R,(0,4) are the radii of curvature 
of the droplet. 

Thus, a set of seven boundary conditions on the interface is obtained: 

(7), 2 boundary conditions, 
(8), 2 boundary conditions, 
(9), 2 boundary conditions, 

(lo),  1 boundary condition. 

In addition, there is a boundary condition at  infinity, namely (5), and the 
requirement that the solution be finite everywhere. 

The solution of the problem subject to these boundary conditions should yield 
the velocity field around the droplet and the general equation describing the 
geometry of the interface. This equation makes this solution differ from the one 
for a solid particle. 

The first six boundary conditions, together with the known velocity distribu- 
tion far from the droplet, suffice to determine explicitly the six unknown velocity 
components for a known geometry of the interface. The pressure field inside and 
outside of the droplet can be calculated from (1) and (2) up to a constant. The 
constant involved in the outside pressure field is determined from the known 
pressure far from the droplet. The constant involved in the interior pressure 
field is determined from the seventh boundary condition on the interface. This 
boundary condition yields a constant value if, and only if, the geometry of the 
interface is used correctly. If a wrong geometry is used, the last boundary con- 
dition yields a functional relationship indicating an inconsistency in the boundary 
conditions. 

Hadamard and Rybczynski already encountered this difficulty. However, 
rather than using the seventh boundary condition for determining the constant 
in the expression for the interior pressure field, they used it for calculating the 
settling velocity U .  This value should be obtained from a simple force balance 
on the droplet. Their solution is, however, numerically correct since for a uniform 
flow field the droplet can be shown to be indeed spherical. Haberman & Sayre 
(1958) encountered the same difficulty, and, since their flow field was Poiseuillian, 
the droplet was not spherical and the difficulty was not resolved. 
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3. The solution 
The mathematical treatment for solving simultaneously the flow fields and 

the equation of the interface is excessively difficult. Therefore, an iterative pro- 
cedure is adopted here. First, the droplet is postulated to be spherical with 
radius ‘ a  ’, and the flow fields inside the droplet and outside it are solved, using 
only six of the boundary conditions. Later the function describing the deviation 
of the droplet from sphericity is determined using the seventh boundary con- 
dition. The newly determined interface may then be used for calculating the 
flow fields of the second iteration. (This iterative procedure was not completed 
in the present work.) Therefore, the solution presented herein should be con- 
sidered as a first approximation of a much more complex problem. 

The solution of the first iteration is based on the method of ‘reflexion’ de- 
scribed by Happel & Brenner (1965, p. 299). Thus, the solution consists of the 
sum of a series of velocity fields, all of which satisfy equations ( 1 )  and ( 3 )  for 
the velocity field of the continuous medium and equations (2) and (4) for the 
velocity field interior to the droplet. Each of the solutions partially satisfies the 
boundary conditions as follows: 

First refiexion : 

at the interface, u(1) = V(l)+$O) 

( 1 3 4  at z = rt 00, v(1) = 0. 

where m# is based on the velocity dl)+ v(O) and acts on an area whose direction 
is t,, and where subscript r indicates a normal to the interface (this subscript 
replaces ‘ n ’  of the previous boundary conditions, since the solutions for a 
spherical droplet are now sought). 

at  z = k co, v(3) = 0; 

where m$)1 is based on t h e  velocity V ( ~ ) + V ( ~ ) ,  etc., etc. 
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The fields v and u satisfying the boundary conditions ( 5 )  through (9) are then 
obtained by superposition of the solutions, i.e. 

v = do) + v(1) + v(2) + v(3) + , . . , 
u = u(1) + u(3) + . . . ) 

with similar summations of the pressures pe  and pi. 

3.1. The first re$ected field 

The general solution of the first reflected field v@), using Lamb’s (1945, p. 595) 
solution in spherical co-ordinates is 

and 

where only the negative harmonics are used in order to obtaindl)+O at z = 5 03, 

to satisfy boundary condition (5). 
For the flow field interior to the droplet, we get similarly 

and 

where only the positive solid harmonics are used in order to obtain finiteness of 
the velocity field at r = 0. 

Here r is the radius vector drawn from the sphere origin and x - ~ - ~ ,  @-n-l, 

p-n-l, xn, Qn and p ,  are solid spherical harmonics of degree -n- 1 and n, 
respectively. These solid spherical harmonics are now solved using a transformed 
set of boundary conditions presented in appendix A. 

Substituting (18) and (20)  into the transformed boundary conditions (A 10) 
to (A15),  and using the orthogonality properties of the Legendre poly- 
nomials, we obtain six sets of equations with six sets of unknowns. The six sets 
of unknowns are the solid spherical harmonics xn, an, pn, x - ~ - ~ ,  Q-n-l, p-n-l 
(n = 1,2 ,3 ,  ...). 

In  order to proceed with the solution we define some spherical harmonics in 
the following way: 

pP1 = peA-lr-lPO (cos O), 
p-, = peaA-,r-2Pl (case), 
p-, = peu2A- , r -3~~~q5P~  (cosO), 
p-4 = ,~~a3A-,r-~P,(cos8), 
p ,  = pia-2AlrPl (cos O), 
p ,  = , U ~ U - ~ A , ~ ~ C O S + P ~  (GOSO), 
p 3  = pia-4~, r3~3(cos  e),  
.Po = pia-lA,Po(cosO), 

CD-, = U~B-,~-~P, (cos O), 
@-, = a4B-,r-3 cos $Pi (COS O), 
@-, = a5B_4r-4P3 (COS O), 
Ql = BlrPl ( cos~) ,  
0, = a-1B,r2cosq5P~(cosO), 
@, = U-~B,T~P, (COS 0), 
x1 = a-lC,r sin #Pi (cos O), 

xw2 = a2C-2r-2sinq5Pi (cos8). 
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All other spherical harmonics do not contribute to the expressions for the 
velocities. 

Substituting (22 )  in the six sets of equations, and equating the coefficients of 
the Legendre polynomials of the same order (i.e. by setting n = 1 , 2 , 3 ) ,  we obtain 
five independent groups of equations (all other equations yield a set of homo- 
geneous independent equations). These equations may be used for determining 
the coefficients of the Legendre polynomials in (22)  as fol1ows:t 
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and the corresponding pressure fields are 

pL1’ = p3-1+p-2+p-3+p-& (26) 

pi” = PO +p2 fp3, (27) 

where the solid spherical harmonics are defined by ( 2 2 )  and (23). 
The drag on the droplet due to the velocity field of the first reflexion can be 

found by using the generalization of Faxen’s law$ as given by Hetsroni & Haber 

where the subscripted parentheses indicate that the functions are evaluated a t  
the centre of the droplet. Substitution of (5) into (28) yields 

F(l) = 27rpea 2 + 3 a [  ____ uo ( b2 201 u ~ ) - ~ ] ~ ,  
1+01 Rt 2 + 3 a R t  (29) 

which is the drag force on a spherical droplet suspended in an unbounded 
Poiseuillian flow field. 

3.2. T h e  second rejiected jield 

Henceforth we limit ourselves to an approximation of the velocity field in (24)’ 
namely 

1 r 
v(l) N - V(r2p-2) + - (30)  

2Pe Pe 

The solution of the second reflected field v(2) is identical to the one given by 
Happel & Brenner (1965, p. 305), except for their constant H ,  which should be 
replaced by the coefficient A_, of this work. Notice that the force due to the 
second reflected field (and all other even-numbered reflexions) is zero. 

3.3. T h e  third rejiexion 

To evaluate the drag force acting on the droplet due to the third reflexion F(3), 
we use equation (28), using v(2) as the unperturbed velocity field, i.e. 

t Note that the solution of the coefficients could readily be obtained by using the general 
solution of Hetsroni & Haber (1969). In this case these coefficients are 

where the a’s, p’s and y are coefficients depending only on the unperturbed velocity field 
and on the geometry. 

1 For tlie fist reflexion only the drag can be evaluated also by using F = 47rV(+p-.J 
(Happel & Brenner 1965, p. 67). 
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Using the expression for v(') from Happel & Brenner one obtains 
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where f(b/Ro) was evaluated by Famularo (1962, table l), and in Happel & 
Brenner (1965, p. 309). More recent values of this function are given by Greenstein 
& Happel (1968). Notice that (31) is correct to O(a/RJ3,  even though the approxi- 
mation (30) has been used for VtU. This was proved by Haber (1969) and pre- 
viously by Greenstein ( 1966). 

The external velocity can be calculated from equation (31), using the method 
of Happel & Brenner (p. 312). This velocity is 

where pek = p,aA?ir-2 cos 0, 

3.4. The fourth andfifth rejexions 

The velocity field of the fourth reflexion v ( ~ )  is obtained in a similar way to that 
used for Vt'), with A(3L replacing A-'. 

The drag force due to the fifth reflexion can be obtained based on v(~) ,  as before 

F(8 = 2np, a ($ (E) [ Uo ( 1 - $) - U ]  (t) 2 f 2  (I) + 0 (E) '1 k. ( 35) 

3.5. The terminal settling velocity and the drag 

Upon summing the individual drag forces of the first six reflexions one readily 
obtains 

This is the drag force acting on a spherical droplet or bubble suspended in 

The terminal settling velocity can now be obtained from a force balance on 
Poiseuillian flow in a tube, at  a distance b from the centreline. 

the droplet 47T 
3 

F + - a3g(pi - p,) k = 0. 

(1 +x+x2) N (1 - 4 4 + 0 ( X 3 )  

(37) 

Substitution of (36) in (37) and using the approximation 

one obtains 

U =  1-- 
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This is a general equation for the terminal settling velocity of a spherical 
droplet or bubble moving axially at an arbitrary radial location within a long 
circular tube. In the tube there is viscous fluid flowing with a constant Poiseuillian 
velocity distribution. This general solution contains as special cases the familiar 
solution of Stokes (U, = 0, a = co, Ro = 03) Hadamard-Rybczynski (Uo = 0, 
R, = a), Brenner & Happel (pi = pe, a = co), Greenstein & Happel (a = co) and 
Haberman & Sayre (pi = pe, b = 0). 

4. The equation of the interface 
The solution of the flow fields, drag force and terminal settling velocity was 

completed for a spherical droplet. These were evaluated without making use 
of the seventh boundary condition, i.e. (10). 

The first iteration is now completed by evaluating the deviation of the inter- 
face from sphericity. (This new interface may then be used for calculating the 
velocity fields of the second iteration.) This is done by using the seventh boundary 
condition. 

The radius of a nearly spherical droplet may be represented by 

r = a [ l +  t (0 ,  $11, (39) 

where Ig(S,$)I 4 1 .  Following the procedure suggested by Hetsroni & Haber 
(1969), &(0,+) is now described by a sum of surface harmonics as follows: 

c a n  

n=2m=0 
E(e, +) = c c [LE cos (m$) + -ksin (m+)l PE (cos 01, (40) 

where .LE and zz were computed, in a general form, in terms of ar, /?:, SiE and 
BE. The a's and P's depend only on the unperturbed velocity field and on the 
geometry. The general solution of LE was given as 

+'*e [(4n3 + 6n2 + 2n - 3 )  a + (4n3 + 6n2 - 4n)l , ( 4 1 )  

where n 2 2. The coefficients 2," are given by an identical expression, with 
&: and 

In order to determine the deviation function t ( S , $ )  to O(a/Ro)2, one must 
examine also the wall effects on the deformation. That is, one must calculate 
the coefficients a$@, aZc4), ..., /?,"(O), p,"'2), p,,"(4), etc., to the desired accuracy 
(the parenthesized superscripted number indicates the reflected velocity field 
used for determining the coefficients). 

d I 
replacing aE and /IF, respectively. 

The zeroth reflexion, i.e. v(0) = v,, yields the following coefficients: 

It can be shown (Haber 1969) that the second reflected field v(2) yields only 
All other coefficients are of one coefficient of the desired order, namely 
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O(alRo)3 and higher. Furthermore, the fourth reflected field and higher reflexions 
have no contribution towards LE of O(a/Ro)2. Therefore, it  is necessary to 
calculate only &"'. 

In appendix C it is shown that 

a - y p  X2(8, #) = t, t, : [V v'2'],=,. (43) 
Using the expression for v ( ~ )  as given by Happel & Brenner (1965, p. 305), 

one obtains 

Substitution of (38) into (44) yields, after some simplifications, 

where the function h(b/R,) is defined as 

and where $k(z), n,(h) and uk(h) are defined by Happel & Brenner (1965, p. 306) 
with H = 1.1, is the modified Bessel function of the first kind of order Ic. 1; and 
I: are its first and second derivatives with respect to the entire argument. 

Should one want to attempt the second iteration of the velocity field, it is 
necessary to perform a numerical computation of (46). 

For small values of the eccentricity b/R,, numerical integration of (46) yields 
(appendix D) : 

h - =0*598 - + O  - . GJ ii) (iJ3 
Finally, the only coefficients Lz of O(a/R,)2 are 

where 

are dimensionless groups and where U,, is the Stokes terminal settling velocity. 
Finally, the equation of the interface, based on the first iteration, is given by 

= a  i + ~ : ~ ~ ~ ~ ~ ~ ~ ~ ~ s e ~ + ~ o , ~ 3 ~ ~ ~ ~ ~ ~ + o  - . (50) i ( a 3 1  

Note, that the deviation from sphericity 5(6, #) is dependent on the dimension- 
less groups (n) and (n)s and on the ratios (u/R,)~,  ab/R;. The deviation from 
sphericity is also dependent on the wall-effect function h(b/Ro). 

The magnitude of the deviation function [ ( O ,  #) can be determined by substi- 
tuting the relevant numerical values in equations (46) through (49). 
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5. Concluding remarks 
We have thus computed the flow fields in and around a spherical droplet 

submerged in a Poiseuillian velocity field in a tube. This solution may serve as 
the first iteration of an iterative procedure for determining more accurate flow 
fields, taking into account the deviation from sphericity of the interface. 

Since the solution presented herein was completed for a spherical droplet, 
there are no lateral forces acting on the droplet and its velocity is parallel to  the 
axis of the tube. In  higher iterations, where deviations from sphericity are 
taken into account, there will be lateral forces and the droplet may then change 
its distance b from the axis of the tube. 

This work is taken from Haber's (1969) Masters thesis. It was supported by 
Grant no. 11-1196 from Stiftung Volkswagenwerk, Hanover. 

Appendix A 

approximately spherical) may be stated as follows: 
Boundary conditions for the first reflexion (assuming that the droplet is 

{U,[l- (R/R,J2 - U]} k, at z = 03, (A 1)  v d o )  + v(1) = 

and at the interface, i.e. at  r = a, 

where rrs is the component of the stress tensor acting in the 8 direction on an 
area normal t o  the T direction. 

Now, let a superscript * represent a value on the interface. Then the boundary 
conditions (A 2)-(A 5) become v" = u*. 

Furthermore, boundary condition (A 8) is rewritten using the expression 
derived by Landau & Lifshitz (1959, p. 239) and (39): 

From these vectorial equations we immediately obtain the following relations: 

v*.t, = u*.t,; 
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also, 

G. Hetsroni, 8. Haber and E. Wacholder 

rV.v* = rV.u*, 
r . V x v *  = r .Vxu* ,  

r . V x (r x x;,) = r . V x (r x T&), 
r .VxnT, ,=r .VxT$, .  

Now, since v . v  = 0, 

we obtain - 

also, 

and 

* 
rV.v* = (r:) ; 

r . V x v *  = [r.Vxv]*, 
r .V x (r x T$,) = [r . V x (r x T(,))]*, 

r.VxnT,, = [r.Vxn(,)]*, 
n;, . t, = n:,. 

Similar relations are obtainable for the interior velocity u and stress vector T ( ~ ) .  

From the vectorial relations and the set of boundary conditions (A 2)-(A 9) 
the following boundary conditions are obtained: 

u* r r  = v* = 0, (A 1 0 , l l )  

[r .Vxu]* = [r.Vxv]*, (A 13) 
[r . V x (r x T ( ~ ) ) ] *  = [ r  . V x (r x no)]*, (A 14) 

[r . V x T(,)]* = [r . V x xQ]*, 

and 

These boundary conditions are to replace the set (A 2) to (A 8). The advantage 
of rewriting the boundary conditions in this form is that the equations become 
separated into groups of independent equations which are easily solved. Note 
that any further vectorial relations must be a linear combination of the seven 
boundary conditions (A 10) to (A 16). 

Appendix B 

based on the internal velocity, was shown by Lamb (1945) to be 
The stress vector acting on a unit surface of the interface in the r direction, 

where pl is the internal pressure, not including the potential of the body forces, 
namely pi = pi + gpir cos 8. 

Substitution of (20) and (21) into (B 1)  yields, after some simplifications 

(B 2 )  

T(,) = - (po+pigr cosQ t,+ (n - 1)  V x (rXn)  + 2(n - 1) V$n 
n=l 

pi(% + 1) (2n + 3 )  r p n + p i ( n + l ) ( 2 n + 3 )  n(n + 2 )  r2vPn]* (B 3 )  
2n2+4n+3 - 
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A similar procedure can be adopted for calculating the stress vector based on 
the velocity exterior to the droplet, 

r av v 
x(,) = - p~ +pe (- ar - r -) + r V ( r  . v), 

where 23: is the pressure external to the droplet, not including the potential 
of body forces, and v = VC*)+V(~).  

Substitution of equations (ll), (18) and (19) into (B 4) yields 

Substituting ( 5 b )  into (B 5 )  yields finally 

[r(cos 20 t, + sin 28 t,) 

+ 2b COB ~ ( C O S  8 t, - sin 8 t,)] - 2bPeUo __ (cos 0 t, - cos 0 sin 4 t+) 
R: 

Appendix C 
It was shown by Hetsroni & Haber (1969) that 

(C 1) 
If v, has no singularities a-n-l = /l-n-l = 0, 

therefore 

but 

thus 
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Appendix D 
The function h(b/Ro) was defined in (46) as follows: 

In  Happel & Brenner (1965, p. 310), the eccentricity function for the torque 
g(b/Ro) is defined, from which it is easy to derive the following expression 

where w,(h), nk(h), @ k ( h )  are defined in Happel & Brenner (1965, p. 306) with 
H = 1 .  

Thus 

where 

(D 4) 

Thus, it suffices to evaluate i(b/Ro), since g(b/Ro) is known and tabulated. 
In  the present work we calculate the function i(b/Ro) only for small distances from 
the centreline, i.e. blRo+ 0. 

Let blRo = /3 and hRo = 6 and recall the identity, 

From (D 4) and (D 5) ,we readily obtain 

(D 6) 
Now, if in the above summation only terms with k = - 1 , 0 , 1  should be 

retained, the accuracy would be in the order of p3, i.e. 

where the integral (Int.) is defined as follows 
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and where 

Numerical integration of equation (D8) yields the approximation of the 
deformation function for small values of b/Ro, i.e. 

One should also note that for the centreline of the tube, i.e. 

b/Ro = 0, i(b/Ro) = g(b/Ro) = 0, 

therefore the deformation function also vanishes, i.e. 

h(O) = 0. 
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